Membrane Protein Biology

Home / Research Areas / Membrane Protein Biology

Adrian Salic

Adrian Salic
Professor of Cell Biology

Adrian Salic, Ph.D. was appointed Assistant Professor of Cell Biology in 2005, after completing his postdoctoral research in the Department of Systems Biology at Harvard Medical School. He received his PhD from Harvard University in 2000. His development of novel tools to detect DNA and RNA synthesis resulted in the creation of the commerically-available "Click-iT" EdU and EU kits that are now widely used by labs around the world.

The Salic lab studies biochemical and cellular mechanisms involved in signal transduction through the Hedgehog signaling pathway. We also develop and apply new chemical technologies to study the cell biology of lipids.

Tom Rapoport

Professor of Cell Biology
HHMI Investigator

Tom Rapoport, Ph.D., joined the faculty at Harvard Medical School in 1995. He received his Ph.D. in Biochemistry from the Humboldt University in East-Berlin for work in enzymology. He then focused on mathematical modeling of metabolism, for which he received his second degree (Habilitation) from the same institution. Before moving to the US, he worked at the Central Institute of Molecular Biology of the Academy of Sciences of the GDR and later at the Max-Delbrueck Center for Molecular Medicine in Berlin-Buch. In 1997, he became a Howard Hughes Medical Institute Investigator.

The Rapoport Lab is interested in the mechanisms by which proteins are transported across membranes, how misfolded proteins are degraded, and how organelles form and maintain their characteristic shapes. Most of the projects center around the endoplasmic reticulum (ER). One project concerns the molecular mechanism by which proteins are translocated across the ER membrane or across the plasma membrane in bacteria and archaea. Much of the current work deals with ERAD (ER-associated protein degradation), a process in which misfolded proteins are retro-translocated across the ER membrane into the cytosol. Major questions concern the mechanism by which proteins move across the membrane and are extracted by the Cdc48 ATPase. Another project concerns the mechanism by which ER morphology, specifically the tubular ER network, is generated. More recently, the Rapoport lab has started to study how proteins are imported into peroxisomes, and how lung surfactant proteins generate lamellar bodies. The lab employs a variety of different techniques, including biochemical methods, such as reconstitutions with purified proteins, and structural biology methods, including X-ray crystallography and cryo-electron microscopy.

Tobias Walther

Tobias Walther, Ph.D.
Professor of Molecular Metabolism (Harvard T.H. Chan SPH)
Professor of Cell Biology
HHMI Investigator

Tobi Walther, Ph.D., received his PhD in biology from the European Molecular Biology Laboratory and Ludwig-Maximilians University in Munich, and trained as a postdoc in the Department of Biochemistry and Biophysics at UCSF. He became a Group Leader at the Max Planck Institute of Biochemistry in Martinsried, Germany. In 2010, he relocated his lab and became Associate Professor of Cell Biology at the Yale School of Medicine. In 2014, Dr. Walther joined the Harvard Chan School of Public Health’s Department of Genetics and Complex Diseases, and studies the mechanisms of lipid and membrane homeostasis in cells and organisms with his scientific partner, Bob Farese Jr.

The Farese & Walther laboratory determines the mechanisms how cells regulate the abundance of lipids, how they store lipids to buffer fluctuation in their availability and how these processes function in membrane biology and cell physiology.

Maofu Liao

Maofu Liao
Associate Professor of Cell Biology

Maofu Liao, Ph.D., is an Associate Professor of Cell Biology at Harvard Medical School. He received his Ph.D. from Albert Einstein College of Medicine in 2006, performed postdoctoral research at University of California, San Francisco, and joined the faculty in the Department of Cell Biology of Harvard Medical School in 2014. 

Research in the Liao Lab focuses on understanding the structure and function of membrane proteins and DNA/RNA-protein complexes. The major techniques include single-particle cryo-electron microscopy (cryo-EM) and a variety of biochemical assays. The Liao lab is particularly interested to reveal the mechanism of how proteins sense, move and convert specific lipid molecules. This is achieved by obtaining high-resolution structures of lipid-interacting proteins, and by studying the conformational dynamics of membrane proteins in lipid bilayer environment.

Subscribe to RSS - Membrane Protein Biology