Metabolism, Metabolomics, and Mitochondrial Biology

Home / Research Areas / Metabolism, Metabolomics, and Mitochondrial Biology

Bruce Spiegelman

Professor of Cancer Biology (DFCI)
Stanley J. Korsmeyer Professor of Cell Biology and Medicine

Bruce Spiegelman, Ph.D. received a B.S. from the College of William and Mary and his doctorate from Princeton University. His postdoctoral training was at MIT, and he was hired to join the faculty at Harvard Medical School and the Dana-Farber Cancer Institute in 1982. Dr. Spiegelman was elected to the National Academy of Sciences, National Academy of Medicine and is a Foreign Associate of EMBO.

The Spiegelman laboratory is centered on the molecular basis of energy homeostasis and tissue development, using adipogenesis and muscle as the primary model systems. This includes the biochemical mechanisms of metabolic diseases, especially obesity, insulin-resistant diabetes (type 2) and muscle diseases. In addition, we have a major interest in suppressing cancer cell growth by stimulating pathways of altered cell metabolism and DNA repair.

Nika Danial

Associate Professor of Cancer Biology (DFCI)
Associate Professor of Medicine (HMS)
Affiliate member of Cell Biology

Nika Danial, Ph.D., is an Associate Professor of Cancer Biology (DFCI) and Medicine (HMS), and an affiliate member of the Cell Biology Department. She received an undergraduate degree in Biological Sciences from Stanford University, and a Ph.D. in Molecular, Cellular and Biophysical Studies from Columbia University. Her postdoctoral studies in the laboratory of Stanley J. Korsmeyer at the Dana-Farber Cancer Institute focused on the role of BCL-2 family proteins in mitochondrial apoptosis, where she discovered a molecular link between cell survival/death regulatory pathways and metabolism. She joined the faculty of the Dana-Farber Cancer Institute and Harvard Medical School in 2005.

The Danial Labfocuses on molecular mechanisms and biologic consequences of cellular fuel choices. Different cell states have distinct anabolic and catabolic needs that are fulfilled by processing specific metabolic substrates. As such, cells’ fuel choice can influence transitions in and out of quiescence, resistance/sensitivity to oxidative stress, metabolic adaptations to nutrient changes, and cell identity, including epigenetic regulation. Understanding how these fuel preferences are controlled and defining their specific metabolic outputs will provide a molecular handle on modulating cell behavior in normal physiology and in pathologic conditions. The Danial lab uses multi-disciplinary in vitroand in vivoapproaches that draw on mitochondrial metabolism, biochemistry, chemical biology, proteomics, metabolomics and genetically engineered mouse models to identify molecular determinants of cellular fuel choices and their effects on cell fate and function. This research program has led to discoveries linking fuel utilization pathways to cellular stress outcomes in diseases such as cancer, diabetes and seizure disorders.

Edward Chouchani

Assistant Professor of Cancer Biology (DFCI)
Assistant Professor of Cell Biology

Edward Chouchani, Ph.D., joined the faculty of Harvard Medical School as an Assistant Professor of Cell Biology in 2017. He received his Ph.D. in Biological Sciences at the University of Cambridge and MRC Mitochondrial Biology Unit. He then performed postdoctoral research at the Dana-Farber Cancer Institute and Harvard Medical School.

Research in the Chouchani Lab focuses on deciphering molecular mechanisms that drive metabolic disease, and using this information to develop targeted therapeutic strategies.  Mitochondria are critical hubs for metabolic signaling, and their dysfunction is key in the pathology of metabolic disease.  The Chouchani Lab combines mass spectrometry and targeted pharmacological approaches in vivo to understand how mitochondrial redox metabolism controls physiology in clinically informative mouse models of obesity and diabetes.

Pere Puigserver

Professor of Cancer Biology (DFCI)
Professor of Cell Biology

Pere Puigserver, Ph.D. is Professor of Cell Biology at Harvard Medical School and Dana-Farber Cancer Institute. He received his PhD in Biochemistry from UIB (Spain) that included research at Stockholm University, following postdoctoral work at the Dana-Farber Cancer Institute. He joined the faculty of Cell Biology at Johns Hopkins University School of Medicine in 2002 and subsequently returned in 2006 to the Department of Cell Biology (Harvard Medical School) and Cancer Biology (Dana-Farber Cancer Institute).

The Puigserver Lab focuses on the regulatory molecular mechanisms of core metabolic processes that maintain cell homeostasis and phenotypes. The research program of the Puigserver Lab includes main areas such as 1) mitochondrial biology, 2) intermediary metabolism and, 3) cancer metabolism and energetics. In mitochondrial biology, particular interests are in the regulatory mechanisms that control mitochondrial energetics and biogenesis, with implications in a variety of diseases including metabolic and mitochondrial diseases. In intermediary metabolism, a major focus is in liver and adipose cells and their regulatory mechanisms that control nutrient-derived metabolic and energetic activities. In cancer metabolism and energetics, the Puigserver Lab addresses how these processes drive core cancer biology programs such as cell growth, survival and resistance mechanisms.  The Puigserver Lab uses a multidisciplinary experimental design and approaches including chemical and genetic screens in mammalian cells, quantitative metabolomics and proteomics, biochemistry, mouse pre-clinical models of obesity/diabetes, mitochondrial diseases and cancer.    

Marcia Haigis

Professor of Cell Biology

Marcia C. Haigis, Ph.D. obtained her Ph.D. in Biochemistry from the University of Wisconsin in 2002 and performed postdoctoral studies at MIT studying mitochondrial metabolism. In 2006, Dr. Haigis joined the faculty of Harvard Medical School, where she is currently a Professor in the Department of Cell Biology. Dr. Haigis is an active member of the Paul F. Glenn Center for the Biology of Aging, a member of the Ludwig Center at Harvard Medical School, and was recently selected for the National Academy of Medicine Emerging Leaders in Health and Medicine Program.

The Haigis Lab aims to: 1) identify molecular mechanisms by which mitochondria respond to cellular stress and 2) elucidate how these cellular mechanisms contribute to aging and age-related diseases, such as cancer. The Haigis lab has made key contributions to our understanding of metabolic reprogramming in cancer, including identifying nodes of metabolic vulnerability in the control of fat oxidation in leukemia and metabolic recycling of ammonia to generate amino acids important for tumor growth.

Subscribe to RSS - Metabolism, Metabolomics, and Mitochondrial Biology